Hermitian Self-Orthogonal Constacyclic Codes over Finite Fields
نویسندگان
چکیده
منابع مشابه
Constacyclic codes over finite fields
An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length lp are characterized, where p is the characteristic of the finite field and l is a prime different from p.
متن کاملConstacyclic and quasi-twisted Hermitian self-dual codes over finite fields
Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields are studied. An algorithm for factorizing xn − λ over Fq2 is given, where λ is a unit in Fq2 . Based on this factorization, the dimensions of the Hermitian hulls of λ-constacyclic codes of length n over Fq2 are determined. The characterization and enumeration of constacyclic Hermitian self-dual (resp., complementary dua...
متن کاملSome constacyclic codes over finite chain rings
For λ an n-th power of a unit in a finite chain ring we prove that λ-constacyclic repeated-root codes over some finite chain rings are equivalent to cyclic codes. This allows us to simplify the structure of some constacylic codes. We also study the α+pβconstacyclic codes of length p over the Galois ring GR(p, r).
متن کاملSkew constacyclic codes over finite chain rings
Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...
متن کاملConstacyclic Codes over Finite Principal Ideal Rings
In this paper, we give an important isomorphism between contacyclic codes and cyclic codes,over finite principal ideal rings.Necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite principal ideal rings are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Discrete Mathematics
سال: 2014
ISSN: 2090-9837,2090-9845
DOI: 10.1155/2014/985387